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Derivatives	and	integrals	in	calculus	are	like	opposite	sides	of	a	coin.	They're	fundamentally	connected,	and	understanding	this	relationship	is	key	to	mastering	calculus.	One	fundamental	theorem	states	that	if	you	know	the	indefinite	integral	(F)	of	a	function	f(x),	you	can	easily	calculate	the	definite	integral	(the	area	under	the	curve)	between	points	a
and	b	by	finding	the	difference	in	the	values	of	F	at	those	two	points:	∫abf(x)dx=F(b)-F(a).	Let's	break	this	down	further.	The	first	fundamental	theorem	states	that	for	any	continuous	function	f(x),	if	you	take	its	antiderivative	(integral)	and	then	find	its	derivative,	you'll	get	back	to	the	original	function	f(x):	F'(x)=f(x).	This	means	that	when	you
integrate	a	function	with	respect	to	its	upper	limit,	the	result	is	the	function	itself.	To	illustrate	this,	consider	the	example	of	finding	the	area	under	the	curve	of	2x	from	x=0	to	x=a.	The	antiderivative	(integral)	of	2x	is	x^2	-	a^2,	and	taking	its	derivative	gives	us	back	2x.	Another	example	is	calculating	the	distance	traveled	by	a	car	at	constant	speed:
if	it	travels	50	km/h	for	one	hour,	the	integral	of	this	speed	over	that	time	is	simply	50	km	(ignoring	any	initial	distance	already	covered).	The	second	fundamental	theorem	shows	that	if	you	have	an	antiderivative	F(x)	of	a	function	f(x),	then	the	definite	integral	∫abf(x)dx	equals	the	difference	in	the	values	of	F	at	b	and	a:	F(b)-F(a).	This	makes
calculating	definite	integrals	much	easier,	especially	when	you	can	find	their	corresponding	antiderivatives.	For	instance,	if	water	flows	into	a	tank	at	a	rate	given	by	f(t),	and	F(t)	measures	the	total	volume	of	water	in	the	tank	at	time	t,	then	the	amount	of	water	added	between	times	a	and	b	is	simply	F(b)-F(a).	This	principle	has	far-reaching
applications	across	various	fields,	including	astronomy	(calculating	planetary	orbits),	finance	(marginal	costs	and	profits),	engineering	(bending	strength	and	motion),	and	more.	The	definite	integral	can	be	evaluated	using	the	Fundamental	Theorem	of	Calculus,	Part	2,	which	states	that	if	we	find	an	antiderivative	of	the	integrand,	we	can	evaluate	the
integral	by	subtracting	the	values	of	the	antiderivative	at	the	upper	and	lower	limits.	This	is	denoted	as	F(b)	-	F(a),	where	F(x)	is	the	antiderivative.	To	do	this,	we	can	divide	the	interval	[a,	b]	into	smaller	subintervals	and	sum	up	the	differences	in	the	antiderivative	over	each	subinterval.	As	the	number	of	subintervals	increases,	this	sum	approaches
the	definite	integral.	Using	the	Mean	Value	Theorem,	we	can	find	a	point	in	each	subinterval	where	the	derivative	of	the	antiderivative	is	equal	to	the	function	value	times	the	width	of	the	subinterval.	Substituting	these	values	into	the	sum,	we	get	F(b)	-	F(a)	=	∑f(ci)Δx.	Taking	the	limit	as	the	number	of	subintervals	approaches	infinity,	we	get	F(b)	-
F(a)	=	∫ab	f(x)	dx,	which	is	the	definite	integral.	This	theorem	can	be	applied	to	evaluate	definite	integrals.	For	example,	to	evaluate	∫-2	2	(t^2	-	4)	dt,	we	first	find	the	antiderivative	using	the	power	rule	for	antiderivatives,	and	then	apply	the	Fundamental	Theorem	of	Calculus,	Part	2.	Note	that	when	evaluating	a	definite	integral,	any	antiderivative
works,	and	the	constant	term	cancels	out.	Also,	the	definite	integral	can	produce	a	negative	value,	which	represents	a	net	signed	area.	The	problem	asks	us	to	calculate	the	definite	integral	∫1⁹(x^(1/2)	-	x^(-1/2))	dx	using	the	power	rule	and	then	apply	this	result	to	determine	who	will	win	a	race	between	James	and	Kathy,	two	roller	skaters.	The
integral	can	be	broken	down	into	simpler	integrals,	which	can	be	evaluated	using	the	power	rule.	The	results	of	these	integrals	are:	∫0⁵(5	+	2t)	dt	=	50	ft,	indicating	that	James	has	skated	50	ft	after	5	seconds.	For	Kathy,	we	need	to	integrate	10	+	cos(π²t)	over	the	interval	[0,	5].	Since	sintsint	is	an	antiderivative	of	cost,cost,	it's	reasonable	to	expect
that	an	antiderivative	of	cos(π2t)cos(π2t)	involves	sin(π2t).sin(π2t).	When	integrating	10	+	cos(π²t),	we	can	break	down	the	integral	into	two	simpler	integrals:	∫0⁵	10	dt	and	∫0⁵	cos(π²t)dt.	The	first	one	evaluates	to	50,	while	the	second	one	evaluates	to	approximately	50.6	ft	after	5	seconds.	Kathy	wins	by	approximately	0.6	ft.	Given	article	text	here
Julie	executes	her	jumps	from	an	altitude	of	12,500	ft	and	starts	falling	at	a	velocity	given	by	v(t)	=	32t	after	exiting	the	aircraft.	She	continues	to	accelerate	until	she	reaches	terminal	velocity.	The	time	taken	for	Julie	to	reach	terminal	velocity	can	be	found	by	setting	up	an	expression	involving	one	or	more	integrals	representing	the	distance	Julie	falls
after	30	sec.	If	Julie	pulls	her	ripcord	at	an	altitude	of	3000	ft,	she	spends	5	seconds	in	free	fall	before	her	parachute	opens	and	400	additional	feet	are	covered.	The	total	time	spent	in	the	air	can	be	calculated	by	adding	the	time	taken	to	reach	terminal	velocity,	the	duration	of	free	fall,	the	descent	after	canopy	deployment,	and	the	recovery	time	until
touchdown.	A	function	is	said	to	be	continuous	at	a	point	if	its	graph	can	be	traced	without	any	break	or	discontinuity	at	that	point.	In	other	words,	there	should	be	no	jump	or	gap	in	the	graph	of	the	function	at	the	given	point.	For	instance,	consider	a	function	f(x)f(x)	with	a	hole	at	x=a.x=a.	The	condition	i.f(a)f(a)	is	defined.i.f(a)f(a)	is	defined	ensures
that	the	value	of	the	function	is	well-defined	at	this	point.	However,	it	is	insufficient	to	guarantee	continuity,	as	shown	in	Figure	2.33.	To	determine	if	f(x)f(x)	is	continuous	at	a,	we	need	to	check	two	additional	conditions:	ii.limx→af(x)exists.ii.limx→af(x)exists	and	iii.limx→af(x)=f(a).iii.limx→af(x)=f(a).	If	these	conditions	are	met,	the	function	f(x)f(x)	is
said	to	be	continuous	at	x=a.x=a.	To	check	if	a	function	is	continuous	at	a	point,	we	need	to	verify	three	conditions:	(1)	the	function	must	be	defined	at	that	point,	(2)	the	limit	of	the	function	as	x	approaches	that	point	must	exist,	and	(3)	the	limit	must	equal	the	value	of	the	function	at	that	point.	Let's	apply	this	definition	to	some	examples.	First,
consider	the	function	f(x)	=	(x^2	-	4)/(x-2).	If	we	try	to	evaluate	f(2),	we	get	0/0,	which	is	undefined.	Therefore,	this	function	is	discontinuous	at	x=2.	Next,	let's	look	at	the	function	f(x)	=	{-(x^2)+4	if	x	≤	3;	4(x-3)	if	x	>	3}.	To	determine	its	continuity	at	x=3,	we	need	to	check	if	the	limit	of	f(x)	as	x	approaches	3	exists.	We	find	that	lim	x→3-	f(x)	=	-5
and	lim	x→3+	f(x)	=	4,	so	the	limit	does	not	exist.	Therefore,	this	function	is	also	discontinuous	at	x=3.	Now	let's	consider	the	function	f(x)	=	{sin(x)/x	if	x	≠	0;	1	if	x	=	0}.	We	can	see	that	f(0)	=	1	and	lim	x→0	sin(x)/x	=	1.	Therefore,	this	function	is	continuous	at	x=0	because	all	three	conditions	for	continuity	are	met.	We	also	have	a	theorem	stating
that	polynomials	and	rational	functions	are	continuous	at	every	point	in	their	domains.	This	means	that	as	long	as	the	denominator	of	a	rational	function	is	not	zero,	the	function	will	be	continuous	everywhere	except	possibly	at	that	point.	Finally,	let's	apply	this	definition	to	determine	where	the	function	f(x)	=	(x+1)/(x-5)	is	continuous.	Using
Continuity	of	Polynomials	and	Rational	Functions,	we	know	that	this	function	will	be	continuous	wherever	its	denominator	is	not	zero,	which	means	it	will	be	continuous	everywhere	except	possibly	at	x=5.	The	given	rational	function	f(x)	=	x/(x-5)	has	a	single	discontinuity	at	x	=	5.	Another	rational	function,	g(x)	=	3x^4	-	4x^2,	is	continuous	for	all
values	of	x	except	where?	To	classify	discontinuities,	we	consider	three	types:	removable,	jump,	and	infinite.	A	removable	discontinuity	occurs	when	there's	a	hole	in	the	graph,	a	jump	discontinuity	happens	when	the	sections	of	the	function	don't	meet	up,	and	an	infinite	discontinuity	appears	at	a	vertical	asymptote.	The	article	then	defines	these
terms	formally:	*	Removable	discontinuity:	if	lim(x→a)	f(x)	exists	*	Jump	discontinuity:	if	lim(x→a-)	f(x)	and	lim(x→a+)	f(x)	both	exist	but	are	not	equal	*	Infinite	discontinuity:	if	either	lim(x→a-)	f(x)	or	lim(x→a+)	f(x)	is	±∞	The	article	then	applies	these	definitions	to	two	specific	examples:	1.	A	function	f(x)	=	x^2	-	4x	-	2	has	a	removable	discontinuity	at	x
=	2,	because	the	limit	as	x	approaches	2	exists	and	equals	4.	2.	A	function	f(x)	=	{	-x^2	+	4	if	x	≤	3,	4x	-	8	if	x	>	3	}	has	a	jump	discontinuity	at	x	=	3,	because	the	one-sided	limits	exist	but	are	not	equal.	Finally,	the	article	discusses	whether	another	function	f(x)	=	x	+	2/x	+	1	is	continuous	at	x	=	-1.	It	finds	that	the	function	is	not	continuous	at	this
point	and	determines	that	it	has	an	infinite	discontinuity	there,	since	the	limit	as	x	approaches	-1-	is	-∞	and	the	limit	as	x	approaches	-1+	is	∞.	The	function	f(x)	has	an	infinite	discontinuity	at	x	=	-1.	To	determine	if	f(x)	is	continuous	at	x	=	1,	we	examine	its	behavior	on	either	side	of	this	point.	If	it	is	not	continuous,	we	need	to	classify	the	type	of
discontinuity	(removable,	jump,	or	infinite).	Continuity	can	be	explored	in	different	intervals,	and	a	function	is	considered	continuous	over	an	interval	if	we	can	draw	the	graph	between	any	two	points	without	lifting	our	pencil.	To	define	continuity	on	an	interval,	we	look	at	what	it	means	for	a	function	to	be	continuous	from	the	right	and	left	at	a	point.
A	function	f(x)	is	said	to	be	continuous	from	the	right	at	x	=	a	if	limx→a+	f(x)	=	f(a),	and	from	the	left	at	x	=	a	if	limx→a-	f(x)	=	f(a).	A	function	is	continuous	over	an	open	interval	if	it's	continuous	at	every	point,	while	a	function	is	continuous	over	a	closed	interval	of	the	form	[a,b]	if	it's	continuous	at	every	point	in	(a,b)	and	satisfies	two	additional
conditions.	For	example,	for	the	function	f(x)	=	x^2	+	2x,	which	is	continuous	over	its	domain	(-∞,-2)	∪	(-2,0)	∪	(0,+∞),	we	need	to	examine	its	behavior	on	either	side	of	certain	points.	Additionally,	the	Composite	Function	Theorem	allows	us	to	expand	our	ability	to	compute	limits	and	demonstrate	that	trigonometric	functions	are	continuous	over
their	domains.	To	evaluate	the	limit	of	the	function	cos(x-π/2),	we	apply	the	composite	function	theorem.	Since	the	inner	function	x-π/2	approaches	0	as	x	approaches	π/2,	and	cos(x)	is	continuous	at	0,	we	can	substitute	this	value	into	cos(x).	This	gives	us	a	value	of	1.	Next,	we'll	show	that	trigonometric	functions	are	continuous	over	their	entire
domains.	To	do	this,	we	need	to	prove	that	cos(x)	is	continuous	at	every	real	number.	We	can	use	the	composite	function	theorem	again	by	showing	that	lim	x→a	cos(x)	=	cos(a)	for	all	values	of	a.	We	then	apply	the	identity	for	the	cosine	of	the	sum	of	two	angles	and	simplify	to	get	lim	x→a	cos(x)	=	cos(0)	=	1.	This	shows	that	cos(x)	is	continuous	at
every	real	number,	which	means	it's	continuous	over	its	entire	domain.	Using	similar	logic,	we	can	show	that	sin(x)	is	also	continuous	over	its	entire	domain.	Since	the	other	trigonometric	functions	can	be	expressed	in	terms	of	sin(x)	and	cos(x),	their	continuity	follows	from	the	quotient	limit	law.	Finally,	we're	introduced	to	the	Intermediate	Value
Theorem,	which	states	that	if	a	function	is	continuous	over	a	closed	interval,	then	it	must	take	on	every	value	between	its	maximum	and	minimum	values	at	least	once.	We'll	use	this	theorem	to	show	that	a	specific	function	has	at	least	one	zero.	The	goal	is	to	determine	if	the	function	f(x)	=	x	-	cos(x)	has	any	zeros	in	the	interval	[0,	π/2].	It	is	shown	that
this	function	satisfies	the	Intermediate	Value	Theorem	(IVT),	which	states	that	since	f(0)	<	0	and	f(π/2)	>	0,	there	must	be	a	real	number	c	in	[0,	π/2]	such	that	f(c)	=	0.	Therefore,	we	can	conclude	that	f(x)	has	at	least	one	zero.	However,	the	IVT	only	allows	us	to	find	one	value	where	the	function	changes	sign,	but	it	does	not	guarantee	that	there	are
no	other	zeros.	To	illustrate	this,	consider	two	examples:	one	where	a	continuous	function	has	multiple	zeros	and	another	where	a	non-continuous	function	does	not	have	any	zeros	in	a	given	interval.	The	text	also	presents	exercises	related	to	determining	discontinuities	of	various	functions,	including	jump,	removable,	infinite,	and	other	types	of
discontinuity.	Additionally,	it	asks	students	to	determine	whether	specific	functions	are	continuous	at	certain	points	or	values,	and	to	find	the	value(s)	of	k	that	makes	each	function	continuous	over	a	given	interval.	Finally,	the	text	includes	exercises	using	the	Intermediate	Value	Theorem	(IVT),	which	can	be	used	to	find	zeros	of	a	function	in	a	given
interval.	**Exercises**	151:	A	particle	moves	along	a	line	with	position	function	s(t).	Another	particle	has	position	function	h(t)	=	s(t)	-	t.	Prove	that	there	must	be	a	value	c	such	that	2	<	c	<	5,	where	h(c)	=	0.	152:	Write	a	mathematical	equation	representing	the	statement	"The	cosine	of	t	is	equal	to	t	cubed."	Use	a	calculator	to	find	an	interval
containing	a	solution.	153:	Apply	IVT	to	determine	if	the	equation	x^3	-	2x	has	a	solution	in	either	[1.25,	1.375]	or	[1.375,	1.5].	154:	Identify	all	values	where	the	function	y	=	f(x)	is	discontinuous	and	explain	why	the	formal	definition	of	continuity	doesn't	apply.	155:	Sketch	the	graph	of	f(x)	=	{3x,	x	>	1;	x^3,	x	<	1}.	Is	it	possible	to	make	f(x)
continuous	for	all	real	numbers?	156:	Sketch	the	graph	of	f(x)	=	(x^4	-	1)	/	(x^2	-	1)	for	x	≠	-1	and	1.	Can	you	find	values	k1	and	k2	such	that	f(-1)	=	k1,	f(1)	=	k2,	and	f(x)	is	continuous	for	all	real	numbers?	157:	Sketch	the	graph	of	y	=	f(x)	with	properties:	infinite	discontinuity	at	x	=	-6,	left-continuous	but	not	right-continuous	at	x	=	3.	158:	Sketch	the
graph	of	y	=	f(x)	with	properties:	removable	discontinuity	at	x	=	1,	jump	discontinuity	at	x	=	2,	and	limits	lim	x→3−f(x)	=	-∞	and	lim	x→3+f(x)	=	2.	**Other	Exercises**	159:	Sketch	a	graph	that	is	discontinuous	at	x	=	1	with	limits	lim	x→-1f(x)	=	-1	and	lim	x→2f(x)	=	4.	160:	Determine	whether	each	of	the	given	statements	is	true	or	false.	Justify	your
response	with	an	explanation	or	counterexample.	161:	Is	the	function	f(t)	=	2et	-	e^(-t)	continuous	everywhere?	162:	If	a	function	has	equal	left-	and	right-hand	limits	as	x	approaches	a,	can	it	be	discontinuous	at	that	point?	163:	Is	each	of	these	statements	true	or	false?	Justify	your	response	with	an	explanation	or	counterexample.	then	the	solution	of
cosx−sinx−x=2cosx−sinx−x=2	over	the	interval	[−1,1]	cannot	be	determined	because	it	does	not	exist	at	that	point.	f(x)	is	continuous	on	[a,b]	if	f(a)f(b)	have	opposite	signs.	The	function	f(x)=x2−4x+3	has	a	discontinuity	at	x=1	and	x=3.	F(r)=ke|q1q2|r2	describes	the	electrostatic	force	between	two	point	charges.	It	can	be	simplified	by	setting	F	as
zero	when	r>R,	where	R	is	the	threshold	value,	due	to	the	physical	reasoning	that	the	electrostatic	force	becomes	negligible	for	points	very	close	to	each	other.	The	force	equation	using	Coulomb's	law	and	the	approximation	is	F(r)=ke|q1q2|r2	and	F(r)={−ke|q1q2|r2}	if	r≥R	respectively.	When	R0,	this	system	remains	continuous.	Letting	the	force	be
10−20	for	r≥R	instead	of	zero	also	makes	the	system	continuous.	A	possible	value	of	R	can	make	this	system	continuous	as	10^(-7)	<	R	<	1m	The	function	F(d)=−mk/d2	describes	the	gravitational	effect	on	a	rocket.	The	constant	k	is	given	by	k=m*d²/2	where	m	is	the	mass	of	the	rocket	and	d	is	the	distance	from	Earth's	center.	Using	the	value	of	k,
we	can	find	the	necessary	condition	D	for	which	the	force	function	remains	continuous	as	√(2m*10^4)	The	function	F(d)=−m1kd2ifd


